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Abstract
The coupling of the rotational dynamics of anisotropic molecules to longitudinal
phonons gives rise to different effects in the interaction of light with supercooled
liquids formed of such molecules. One is the opening of new light scattering
channels in Brillouin scattering; this can alter the corresponding phonon
lineshape. Another one is the possible appearance of a depolarized signal in
transient grating experiments (TG), also called impulsive stimulated scattering.
We give a brief theoretical description of these two effects for supercooled
liquids formed of linear rigid molecules. We also present preliminary results
on the analysis of such a TG experiment performed on m-toluidine.

1. Introduction

In a molecular liquid formed of anisotropic molecules, both the molecular dielectric anisotropy
and the density fluctuations can contribute to the scattering of light. Moreover, the mean local
orientation of the molecules is coupled to the local shear of the liquid and this shear is an
inherent part of both the longitudinal and the (diffusive or propagative) transverse phonons.
The interpretation of the light scattering experiments involving these phonons either in the
frequency, or in the time domain, requires an expression for the equations of motion of the
density and of this mean molecular orientation, as well as an appropriate model for the local
dielectric fluctuations. In the case of a supercooled liquid formed of rigid linear molecules,
some of us have proposed, Dreyfus et al (1998, 1999), that the two conservation laws,

ρ̇(�r , t) + div �J(�r , t) = 0, (1)

�̇J (�r , t) = div σ(�r , t), (2)

0953-8984/03/110825+10$30.00 © 2003 IOP Publishing Ltd Printed in the UK S825

http://stacks.iop.org/JPhysCM/15/S825


S826 R M Pick et al

where ρ is the mass density, �J is the mass current density and σ is the stress tensor, should be
complemented by the two constitutive equations

σ = (−δP + ηb ⊗ div �v)I + ηs ⊗ τ − µ ⊗ ˙
Q, (3)

¨
Q = −ω2

R Q − �′ ⊗ ˙
Q + �′µ ⊗ τ . (4)

Here Q is a symmetrical traceless tensor representing the local orientational probability of the

molecules, I is the unit tensor, �J is related to the mean molecular velocity, �v, through

�J = ρm �v, (5)

where ρm is the mean mass density, τ is the strain rate, traceless, second rank tensor,

τi j = ∂vi

∂x j
+

∂v j

∂xi
− 2

3
div �vδi j , (6)

and δP(�r , t) is a pressure change related to the instantaneous mass density change δρ(�r, t) by

δP(�r , t) = c2
aδρ(�r, t) (7)

where ca is the adiabatic sound velocity, ηb(t), ηs(t), µ(τ) and �′(t) are, respectively, the
bulk and shear viscosities, the rotation–translation coupling and the orientational relaxation
functions, the symbol ⊗ representing a convolution product with respect to time, ωR is the
libration frequency of the axial molecules and �′ is the rotation–translation coupling constant,

a quantity that takes into account, inter alia, that ρ and Q have different dimensions.
It was finally proposed in Dreyfus et al (1998, 1999) that the local dielectric fluctuations

should be related to δρ(�r, t) and Q(�r , t) through

δε(�r , t) = aδρ(�r, t)I + bQ(�r , t). (8)

Equations (1)–(4) can, in fact, be derived, Franosch et al (2002) from a microscopic theory

of such a liquid through a Mori–Zwanzig technique that considers ρ(�r , t), �J (�r, t), Q(�r , t)

and
˙
Q(�r , t) as the only relevant variables of the problem. With the help of this technique,

the four memory functions can be shown to have reasonable time and temperature variations,
i.e. have long time behaviours that can be characterized by relaxation times increasing with
decreasing temperature7. Furthermore, defining the Laplace transform through the convention
f (ω) = i

∫ ∞
0 f (t) exp(−iωt) dt , it has been shown in Franosch et al (2002) that the imaginary

parts of �′(ω), ηb(ω) and ηs(ω) are positive whatever the frequency (relations A), and that the
following inequality holds: Im(�′(ω)) Im(ηs(ω)) − �′(Im(µ(ω))2 � 0 (relation B).

7 Note that the same technique can be applied to the case where only ρ(�r, t), �J (�r, t) and Q(�r, t) are the relevant
variables. In that case, equations (3) and (4) are replaced by

σ = (−δP + η̂b ⊗ div �v)I + η̂s ⊗ τ − λ ⊗ Q, (3b)

˙
Q = −M ⊗ Q +

�′

ω2
R

λ ⊗ τ . (4b)

Yet (cf Franosch et al 2002), one can show that the Laplace transforms of the three memory functions η̂s (t), λ(t) and
M(t) do not have, at low temperature, the physically meaningful time and temperature dependence of their counterparts
in the four-variable theory. The two preceding equations are thus inappropriate for the study of supercooled molecular
liquids because the corresponding memory functions cannot be a priori modelled in a reasonable way.
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2. Light scattering by longitudinal phonons

It has been shown in Dreyfus et al (1998, 1999) that the set of equations (1)–(4) complemented
by equation (8) allows us to describe the intensity detected in a Brillouin depolarized scattering
experiment. The same technique can be used to derive the intensity obtained in a VV Brillouin
scattering experiment, Pick et al (2002). One obtains

IV V (�q, ω) = I1(ω) + I2(�q, ω), (9)

with

I1(ω) = I0

ω
Im

4b2

3

(
1 − ω2

R

D(ω)

)
〈|Q0

V ⊥′ |2〉, (10)

I2(�q, ω) = I0

ω
Im

(
ρm

�′ (ωRq)2 PL (q, ω)

[
a +

2�′

3ρm
br(ω)

]2)
〈|Q0

V ⊥′ |2〉, (11)

where 〈|Q0
V ⊥′ |2〉 is the thermal average of |Q0

V ⊥′ |2, Q0
V ⊥′ being the V ⊥′ component of Qi j

and ⊥′ being the direction of the scattering plane perpendicular to �q . Equation (11) takes into
account that the thermal averages of the orientational fluctuations, 〈|Q0

V V |2〉, and of the density
fluctuations, 〈|δρ0|2〉, are related by

3ω2
R

4�′ 〈|Q0
V V |2〉 = c2

a

ρm
〈|δρ0|2〉 ∝ kB T . (12)

Equation (10) has been written in such a way that I1(ω) is exactly 4/3 of IV H b(ω), where
IV H b(ω) is the intensity that would be obtained in a back-scattering depolarized experiment
performed with the same incident intensity, while D(ω) is given by

D(ω) = ω2
R + ω�′(ω) − ω2. (13)

Equation (10) represents a pure rotational dynamics independent of the value of the scattering
vector, �q. Conversely, equation (11) represents what is usually called the ‘phonon part’ of the
Brillouin spectrum. This term is, apart from an unimportant factor, the product of a longitudinal
phonon propagator, PL(q, ω), by the square of a bracketed term. Here,

P−1
L (q, ω) = [ω2 − q2ρ−1

m (c2
aρm + ωηL(ω))] (14)

with

ηL (ω) = ηb(ω) +
4

3

(
ηs(ω) − �′

ω
D(ω)r2(ω)

)
, (15)

r(ω) = ωµ(ω)[D(ω)]−1, (16)

r(ω) being the signature of the rotation–translation coupling.
The bracket a + 2�′

3ρm
br(ω) that appears in equation (11) is linear in a and b, the term in b

being proportional to �′r(ω). Its form makes it clear that both the density and the orientation
fluctuations associated with the longitudinal phonons play a role in their detection; the bracket
appears as a square because these fluctuations are not only the detection mechanism of these
phonons but also their source.

The line shape of the ‘phonon’ spectrum is usually considered to be simply given by
1/ω Im(PL (q, ω)), the term proportional to a2 in equation (11),which can be called the density-
only channel. The existence of terms involving br(ω) at different powers in equation (11) alters
the shape of the phonon spectrum. This effect is mostly visible in the temperature range where
the relaxation times related to the four memory functions are of the same order of magnitude
as the longitudinal phonon period. This is exemplified in figure 1 where we have fitted the full
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Figure 1. Full phonon contribution—equation (11) (dashed curve)—of a numerical spectrum (see
the text) and its best fit with a ‘density-only’ model (full curve). The full phonon spectrum has
been computed with a Debye relaxation time, τL , such that the corresponding ωBτL is equal to
0.93, with ωB = caq.

spectrum given by equation (11) (obtained by choosing for these memory functions Debye
expressions with identical relaxation times and reasonable amplitudes, Pick et al (2002)) by
a density-only model, ηL (ω) also being characterized by a single Debye process. Not only
does the fitted relaxation time differ from the original one (the fitted time equals 67.7 ns for an
original one of 50 ns) but the phonon peak becomes asymmetric, with more intensity on the
high frequency side and less on the low frequency one than can be predicted by a density-only
channel model. This effect is such that, at low temperature, the intensity related to equation (11)
may become negative at very low frequency. Nevertheless, one can show that, whatever the
values of a and b, relations A and B ensure that independently, 3/4I1(ω) = IV H b(ω) and
I2(�q, ω) + 1/4I1(ω) are positive whatever the frequency, so that IV V (�q, ω) is always positive;
this is not a trivial result since the first term of I2(�q, ω) + 1/4I1(ω) depends on �q while the
second does not. Equation (9), supplemented by the relations A and B, thus contains all the
necessary information to take into account the coupling of translation and rotation motions in
a supercooled molecular liquid, and this coupling presumably plays a role in the phonon line
shape of a supercooled liquid such as m-toluidine (see section 4).

3. Transient grating experiments—theoretical aspects

In a transient grating (TG) experiment, see Torre et al (2001), two coherent light pulses (the
pumps), with wavelength λ and wavevectors �q1 and �q2, are sent, at time t = 0, into the liquid,
�q2 forming with �q1 a small angle, θ (∼6◦ for q = 0.63 µm−1). These two beams interfere
to produce an electric field, �E(�r , t), which is a standing wave with wavevector �q/2, where
�q = �q2 − �q1. This electric field generates in the liquid a grating of wavevector �q through three
distinct mechanisms:

(i) it is partly absorbed, generating a local heating,
(ii) it creates an instantaneous electrostrictive pressure and

(iii) it partly orients the molecules along its electric field through its coupling with the
anisotropic part of the molecular polarizability tensor (optical Kerr effect—OKE).

The local pressure induced by the two first effects generates a density perturbation that
propagates through the liquid under the form of two longitudinal phonons with opposite
wavevectors �q and −�q, while the molecular orientation produced by the OKE is a third origin
of those phonons.
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The TG diffracts, at a later time, a polarized probe beam and the diffracted beam with
the same polarization is recorded as a function of time through a heterodyne detection
technique (HD). If δεi j(q, t) is the polarizability change of the liquid due to the grating at
time t , the HD signal, SH D(t), obtained in the impulsive limit of the pumps, can be written as

SH D(t) ∝ δεi j(q, t) ∝ Rε
i jkl(q, t)Fex

kl (17)

where Fex
kl represents the instantaneous exciting force(s) produced by these pumps, and is a

linear combination of products of two Cartesian components of �E(�r , t). Defining the scattering
plane by �q1 and �q2, in the present experiment, both the probe and the diffracted beams are in
this scattering plane, and their polarization, as well as those of the two pump beams, are either
V (perpendicular to the scattering plane) or H (in that plane). Furthermore, due to the very
small scattering angle, all the H polarizations can be considered to be parallel to �q. We shall
be interested here only in the Rε

ααββ(q, t) components of Rε
i jkl(q, t) where α (respectively β)

is either V or H .
The interpretation of such experiments requires two extensions of equations (3) and (4).

Firstly, the timescale of the response function is such that thermal diffusion can no longer be
ignored. This requires

(i) writing down a fifth equation for the conservation of energy which explicitly introduces
the notion of temperature,

(ii) adding a new term in the rhs of equation (3), because the pressure fluctuations depend
now both on the density and the temperature fluctuations.

Secondly, no source term appeared in equations (3) and (4); they have to be added in order to
describe stimulated experiments, each mechanism representing a distinct source. Introducing
those sources in a phenomenologicalway, and taking into account memory effects as suggested
by considerations of generalized hydrodynamics(Götze and Latz 1989), see also Franosch et al
(2001), some of us (Pick et al 2003), extending a previous description of the problem by Yang
and Nelson (1995a), have recently proposed to write those equations as

σ = (−c2
i δρ + ηb ⊗ div �v − ρmβ ⊗ δT )I + ηs ⊗ τ − µ ⊗ ˙

Q + K U I , (18)
¨
Q = −ω2

R Q − �′ ⊗ ˙
Q + �′µ ⊗ τ + FUC, (19)

Cv ⊗ Ṫ − Tβ ⊗ ρ̇ − λ�T = HU, (20)

K U I , FUC and HU being, respectively, the precise expressions of the sources, Fes , Fet and
Fhd , introduced in Di Leonardo et al (2003).

Here, ci is the isothermal velocity, Cv(t) and β(t) are, respectively, the memory functions
associated with the specific heat at constant volume per unit volume, and with the tension
coefficient defined as 1

ρm

(
∂ P
∂T

)
ρ
; λ is the thermal conductivity, the frequency dependence of

which can be neglected since the structural relaxation does not slow down the exchange of
energy.

Furthermore:

U ≡ U(�r , t) = E2

2
[1 + cos(�q · �r)]δ(t) (21)

where E is the amplitude of �E(�r , t), ê being the direction of its polarization and where δ(t) is
the Dirac delta function.

In equation (18), K U represents the additional energy per unit volume introduced by
the interaction of �E(�r , t) with the mean polarizability of the liquid (electrostrictive effect).
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Similarly, the term in FU in equation (19) is the torque exerted on the molecules by the
electric field due to their polarizability anisotropy with

Ci j = êi ê j − 1
3δi j . (22)

Finally, HU represents the heat absorbed by the liquid from the pump. Using techniques
similar to those used in Pick et al (2002), one can derive from equations (18)–(20),
supplemented by equations (1), (2) and (8), the expression of Rε

ααββ(q, t), which reads

Rε
ααββ(q, t) = 1

2π

∫ ∞

0
cos ωt Re(Rε

ααββ(q, ω)) dω (23)

with

Rε
ααββ(q, ω) = F E2 D(ω)−1 b(1 + 3εexεp)

6
+ A(q, ω)P ′

L(q, ω)

[
a +

(3εp − 1)

3

�′

ρm
br(ω)

]
,

(24)

A(q, ω) =
{
−i

ρm

λ

β(ω)

1 + iωτh(ω)
H − q2

[
K +

(3εex − 1)

6
r(ω)F

]}
E2 (25)

where the index α (respectively β) is defined by the value of εp (respectively εex), the
polarization V (respectively H ) corresponding to ε = 1 (respectively ε = −1).

Here, τh(ω) is the heat diffusion time for wavevector q and frequency ω, τh(ω) = −i Cv (ω)

λq2 ,

P ′−1
L (q, ω) is the inverse of the longitudinal phonon propagator, renormalized by the change

from adiabatic propagation at usual frequencies to isothermal propagation at very low
frequencies, P ′−1

L (q, ω) = P−1
L (q, ω) + q2g(ω), where ca (cf equation (7)) is related to ci

(cf equation (18)) by

c2
a = c2

i − i
ρm Tβ(0)2

Cv(0)
, (26)

while

g(ω) = −iρm T

[
β(0)2

Cv(0)
− β(ω)2

Cv(ω)

iωτh(ω)

1 + iωτh(ω)

]
(27)

(note that, in the analysis we shall perform in section 4, the role of g(ω) has been ignored).
In equation (24), the first term of the rhs represents the q-independent orientational

contribution (OKE term) and is the TG counterpart of equation (10): this term is proportional
to F E2b (instead of b2 in equation (10)), making clear that, if the detection mechanism is the
same and proportional to b in both experiments, the source is the torque, proportional to F E2,
and not the orientational fluctuations, proportional to b. A similar analysis can be done for the
second term of the rhs of equation (24). It is, as for equation (11), the product of three factors,
the last one being the detection mechanism, which, as in that equation, is equal to a + 2�′

3ρm
br(ω)

for a V polarization of the detection mechanism. The second factor is the longitudinal phonon
propagator in which the change from the adiabatic regime to the isothermal one at very low
frequency has been taken into account. Finally, A(�q, ω) is a sum of three terms, each one being
one of the sources of the grating; the existence of a term in τh(ω) associated with H E2 makes
it clear that the thermal grating disappears because of the heat diffusion process while the term
in F underlines that the OKE is, at least in principle, one of the origins of the longitudinal
phonons through the rotation–translation coupling memory function, r(ω).

A priori, the shape of SH D(t) depends on the polarization of both the pump and the probe
beams. In practice (Taschin et al 2001), for the different supercooled liquids that have been
studied so far at LENS, the pump polarization does not affect this shape. This implies that the
F E2 term always has a negligible effect with respect to the other two sources, so that F can
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be safely put equal to zero in equation (24). The role of the two detection mechanisms can
then be disentangled by playing with the probe polarization and one obtains

Riso(ω) = 1

3
(2Rε

vvvv + Rε
hhvv) = a P ′

L(q, ω)

(
−i

ρm

λ

β(ω)

1 + iωτh(ω)
H − q2 K

)
E2, (28)

Raniso(ω) = 1

2
(Rε

vvvv − Rε
hhvv) = �′

ρm
br(ω)P ′

L(q, ω)

(
−i

ρm

λ

β(ω)

1 + iωτh(ω)
H − q2K

)
E2.

(29)

The two preceding expressions differ only by a factor r(ω); this means that, if Raniso(t) is
detectable and Riso(t) can be properly analysed, a further analysis of Raniso(t) will yield
precise information8 on µ(ω) at temperatures at which ηL(ω) has been already determined.

4. Impulsive stimulated thermal scattering—application to m-toluidine

Taschin et al (2001) performed an optical heterodyne TG experiment with selective polarization
configurations on m-toluidine, a molecular glass-former. They showed that, in this material,
sending onto the liquid near-infrared pulses, the induced grating is mainly due to the heating
effect. In this case, the TG experiment is also called impulsive stimulated thermal scattering
(TG-ISTS), see Yang and Nelson (1995a, 1995b).

m-toluidine has an MCT critical temperature Tc = 220 ± 5 K, Torre et al (2000), with
Tg = 187 K. The experiments were performed at 11 temperatures between 225 and 195 K
with three different wavevectors, q = 1, 0.63 and 0.338 µm−1. The isotropic TG-ISTS signal
exhibits the typical evolution already found, e.g., in Yang and Nelson (1995b). As for the
anisotropic signal, in agreement with a numerical analysis of equations (28) and (29), it starts
to have a detectable amplitude, with a shape different from the isotropic one, in the vicinity
of Tc, where the relaxation time τL associated with ηL(t) is of the order of 10 ns, while the
order of magnitude of τh(0) is 104 ns. This anisotropic intensity increases with decreasing
temperature and, when τL � τh(0), the two signals end up having the same shape, the liquid
behaving as an isotropic solid in this limit. This is exemplified in figure 2 where both signals
are shown for three different temperatures, ascertaining, for this liquid, the existence of a
sizeable b-detection mechanism in this temperature range.

These spectra have been analysed with a least squares fitting procedure making use of
equations (28) and (29) in which the longitudinal viscosity and the rotation–translation memory
function have been approximated by

ωηL (ω)ρ−1
m = �2

L

[
1 −

(
1

1 + iωτL

)βL
]

+ iωγL , (30)

ωµ(ω) = �2
µ

[
1 −

(
1

1 + iωτµ

)βL
]
, (31)

the frequency dependence of both β(ω) and Cv(ω) being ignored. The fit parameters are thus
ca , �L , τL , βL , γL , τµ and −iCv(0)/λ. These different parameters mostly influence the signal
in different time regions (ca and �L for times shorter than 102 ns, βL and τL for times between
102 and 104 ns and Cv(0)/λ for longer times) in the isotropic case, τµ being specific to the
anisotropic signals; consequently, the correlation between the different fit parameters is not too
large, in spite of their large number. The analysis of the recorded spectra is far from complete
and we present here only tentative conclusions.
8 In a TG-ISTS experiment, caq is of the order of 10−3ωR , so that D(ω) can be safely approximated by ω2

R in
equation (13).
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Figure 2. The isotropic and anisotropic signals (cf equations (28) and (29)) of m-toluidine for
q = 0.63 µm−1, at three different temperatures.

(a) The values of ca(T ) and �L(T ) are consistent with those deduced from a previous Brillouin
scattering experiment (Aouadi et al 2000). The accident on �L(T ) visible in figure 3 in the

vicinity of 205 K, and which does not show up on c∞ =
√

c2
a + �2

L is strongly correlated
with the incorrect values of τL(T ) in the same temperature region (see (d)).

(b) γL is always negligibly small.
(c) The low frequency part of the rotational dynamics (see equation (10)) was analysed at

high temperature in Aouadi et al (2000), assuming that it could be represented by

I1(ω) = I ′
0

ω
Im

[
1 −

(
1

1 + iωτR

)βR
]
. (32)

Values of τR(T ) and βR(T ) were deduced, in the same paper, in the 225–195 K domain,
from a similar analysis performed on PCS data. We obtain here βL(T ) values much lower
than the corresponding βR(T ) of Aouadi et al (2000). This appears to be in line with the
fact that, if one writes

ω�′(ω) = �2
�′

[
1 −

(
1

1 + iωτR′

)βR′ ]
(33)
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Figure 3. m-toluidine: c∞ =
√

c2
a + �2

L (�) and �L (�) versus temperature deduced from the
isotropic spectra and their comparison with the Brillouin scattering values (respectively full and
dashed lines) obtained in Aouadi et al (2000).

Figure 4. m-toluidine: τR (full curve) deduced from Aouadi et al (2000), τL (�) and τh (� and
) deduced from the isotropic spectra for q = 0.63 µm−1, neglecting g(ω) and the frequency
dependence of CV (ω) and β(ω). The full triangles (�) correspond to the logarithmic scale (left)
and the empty triangles () to the linear scale (right) to emphasize the ‘anti-crossing’ behaviour
of τL and τh around T = 205 K where τL ≈ τh .

with ��′ ≈ ωR , as suggested by the direct study of I1(ω), the values of βR′(T ) deduced
from βR(T ) with the use of equations (10) and (13) are close to those of βL(T ).

(d) τh = iCv(0)/λq2 is temperature independent as long as τL < τh , while τL strongly
increases with decreasing temperature. Yet, in this temperature domain, τL/τR is smaller
than unity, the ratio increasing when τR ≈ τh . At lower temperatures, our fits yield values
of τh(T ) that are definitely shorter, while the analysis suggests that τL/τR ≈ 1. This
‘anti-crossing’ behaviour of τL and τh , shown in figure 4, indicates that the role of the
frequency dependence of Cv(ω) and β(ω) and that of g(ω) have to be explored in detail
before a definite conclusion can be drawn on the origin(s) of the effect.

(e) Finally, as already suggested in Taschin et al (2001), we find that τµ is larger than τL . A
constant ratio of τµ/τL close to 2.5 seems to describe properly the anisotropic signal in
the region 225–208 K in which τL increases by a factor larger than 102.



S834 R M Pick et al

5. Conclusion

In molecular supercooled liquids formed of anisotropic molecules, the coupling between the
orientation and the centre of mass motions of the molecules is characterized by a memory
function µ(t) and an amplitude �′, while light may be scattered by both the density and the
molecular orientation fluctuations. When �′ is large enough, the line shape of the Brillouin
spectrum is notably different from what it would be with �′ = 0 when the longitudinal
phonon relaxation time, τL , and the phonon frequency, ωB , are such that ωBτL ≈ 1. In the
case of TG experiments, the rotation–translation coupling leads to the existence, on top of the
already known isotropic signal, of an anisotropic signal. Their successive analysis allows us
to determine all the parameters which determine the shape of the isotropic signal, to compare
directly τL with the translation–rotation relaxation time, τµ, and to compare both of them with
the independently measured rotational relaxation time, τR , in the 10–106 ns time window.
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